INTRODUCTION

THIS IS A REQUEST FOR INFORMATION (RFI) ONLY. This RFI is issued by CH2M Hill Plateau Remediation Company (CHPRC) solely for information and planning purposes – it does not constitute a Request for Proposal (RFP) or a promise to issue an RFP in the future. This request for information does not commit the CHPRC to contract for any supply or service whatsoever. Further, CHPRC is not at this time seeking proposals and will not accept unsolicited proposals. Responders are advised that the CHPRC will not pay for any information or administrative costs incurred in response to this RFI; all costs associated with responding to this RFI will be solely at the interested party’s expense. If a solicitation is released, it will be issued on CHPRC’s Current Solicitations website at: http://chprc.hanford.gov/page.cfm/CurrentSolicitations. It is the responsibility of the interested parties to monitor this site for additional information pertaining to this requirement.

CHPRC in support of the U.S Department of Energy (DOE) is requesting information from interested contractors to supply jet grouting services to stabilize the Radiochemical Engineering Complex (REC) during the effort to remove highly contaminated soils from beneath the B-Cell of the REC contained within the 324 Building, a non-reactor, Category 2 nuclear facility located in the 300 Area of the United States DOE Hanford Site.

CHPRC is interested in identifying whether potential recipient contractors, which can include teaming arrangements, have the capability to supply jet grouting services and systems for installation within the 324 Building and adjacent to the REC structure in support of the B-Cell contaminated soil removal.

BACKGROUND

The removal of contaminated soils from the B-Cell will require that the support soils beneath the structural foundation of the B-Cell concrete structure walls will be removed. It is necessary to provide structural stabilization and support for designated locations along the B-Cell structure during the excavation process. The supporting soils are described in the attached soil stratification log (Figure 1). The strata has been documented in a geotechnical engineering report and been verified by excavations external to the building.

The jet grouted columns will need to be installed within the 324 Building structure in internal gallery areas with height constraints of 8 feet, width constraints of 22 feet and depth constraints from structural walls of 8 feet. Access to the soilcrete column locations is limited to stairwells, double wide man doors, and a freight elevator. The desired installation would either core drill the existing concrete floor to allow installation access or excavate the concrete slab on grade to
provide necessary access to install the subgrade grout columns. Due to facility constraints, grouts must be cementitious in nature. Polymer or other non-cement grout compounds are not acceptable

RESPONDING TO THE RFI

RFI responses shall be a Letter of Interest that should include:

1. Name of Organization(s)
 a. Name of the primary point of contact for the response including:
 i. E-mail address
 ii. Phone number
 b. Identification of other key individuals who collaborated on the RFI response
 c. If teaming, include the names/organizations of those teaming partners

2. Submittal of Qualifications
 a. Specific capabilities and recent relevant experience in successfully installing, testing, and completing similar type jet grouting applications and systems in constrained spaces / work environments.
 b. Specific instances where the installation of vendor’s jet grouted soilcrete columns have failed, a brief narrative detailing the conditions contributing to the failure, and a summary of corrective actions.
 c. Describe engineering, quality, installation and testing capabilities
 d. Description of proposed equipment and verification that the equipment is able to be installed within the available footprint. The following information is requested as part of the RFI response:
 i. Footprint Verification – (available space within the building 8 foot tall by 22 foot wide by 8 foot deep footprint).
 ii. Access requirements
 iii. Hydraulic system and associated operating pressure (including hydraulic oil type and weight).
 iv. Compressed air system and associated operating pressure.
 v. Water delivery system including operating pressure and anticipated quantity of water to be used per soilcrete column.
 vi. Description of grout batch plant including space requirements, delivery hoses, and required vicinity to the installation location.
 vii. Anticipated diameter of each column and installation timing per column.
 viii. Anticipated spoils and a proposed spoils management system
 ix. Material testing data and product historical performance data
x. Standard material tests to validate installed column integrity.
xii. Installation procedures and data collection abilities during tests to validate the correct installation of the column.
xii. Technical data typical of completed columns including anticipated bearing capacity, type of grout, compressive strength of soilcrete column.
xiii. Locations and description of similar installations, specifically include any DOE installations and provide project names and contact information if available.

3. Budgetary Cost Estimate
 a. The Budgetary Cost Estimate should include equipment procurement, mobilization and installation of the jet grouting column systems. (Estimated 16 columns completed to a depth of 15 feet below top of excavation.)

4. Schedule
 a. An estimated timeline identifying the steps and durations that would enable delivery and installation of the system for CHPRC acceptance testing by September 28, 2017.

Of particular interest to CHPRC are the advantages that a contractor could offer with respect to shortening the development and testing schedule to validate the viability of the proposed approach for the intended application with supporting documentation on examples of installed soilcrete columns for which testing and inspection has been completed. In the response to the RFI, please also include a Rough order of Magnitude (ROM) cost to install a soilcrete column on site for testing and inspection. This information will support future decisions by the CHPRC Soil Removal Project in developing its procurement strategy for the jet grout systems. If found advantageous, a Request for Proposal (RFP) will be issued in January of 2017.

RESPONSE SUBMISSION DEADLINE:

Responses to this RFI must be submitted no later than 1:00 pm Pacific Standard Time on January 16, 2017. RFI submissions will be accepted as e-mail attachments only. All responses must be sent to Doug Ordal, at Douglas_C_Ordal@rl.gov, with “RFI 300-296 Jet Grouting Response” in the subject line.

CHPRC has determined that North American Industry Classification System (NAICS) Code 541330, Engineering Services, applies to this acquisition. Therefore, the size standard for determining whether an Offeror is a small business in regard to this acquisition is $15M. If an RFP is issued, CHPRC retains the option of issuing the RFP as a small business set aside.
Figure 1 Soil Stratigraphic Section

<table>
<thead>
<tr>
<th>Depth (below base of foundation)</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 12.0</td>
<td>Loose to medium dense, Poorly Graded SAND (SP); moist, fine- to medium-grained; angular grains, massive structure; no obvious bedding, stratification, or other sedimentary structures evident; trace scattered fine to coarse gravel and cobbles on the surface, but a hand excavation of up to about 12-inches into the full length of the slope at the southeast corner exposed only sand.</td>
</tr>
<tr>
<td>12.0 - 14.0</td>
<td>Covered</td>
</tr>
<tr>
<td>14.0 - 15.0</td>
<td>Loose, brown Well Graded GRAVEL with Sand (GW); moist; fine to coarse rounded gravel with cobbles; fine- to medium-grained angular sand; disturbed.</td>
</tr>
<tr>
<td>15.0 - 18.5</td>
<td>Very dense, brown, Well Graded GRAVEL with Sand (GW); moist; fine to coarse rounded gravel with cobbles (boulder sizes were not observed in the measured section, but several boulders up to 16-inches in maximum dimension were scattered about the floor of the excavation); fine- to medium-grained angular sand; brown plastic fines. Estimated distribution: Boulders and cobbles - 15 to 20 percent Gravel - 45 to 50 percent Sand - 20 to 30 percent Fines - trace to 5 percent No obvious stratification or grading within this unit; several imbricated pebbles suggest flow direction to the south or southeast; gravel and larger clasts are in contact in a tightly packed silty sand matrix; fines add an effective binder to the unit without cementation; porosity and permeability are very low; secondary calcite or silica mineral precipitate is present on the bottom surfaces of many gravel-cobble clasts.</td>
</tr>
<tr>
<td>18.5 - 19.0</td>
<td>Very dense, brown, Well Graded GRAVEL with Sand (GW); moist; fine to coarse rounded gravel with cobbles; fine- to medium-grained angular sand; gravel and cobbles are in contact in a tightly packed sand-filled matrix; low porosity; moderate permeability.</td>
</tr>
<tr>
<td>19.0 - 20.0</td>
<td>Covered</td>
</tr>
</tbody>
</table>

Note: The sand section, 0.0 to 14.0 feet, was measured at the southeast corner of the excavation. The gravel section, 14.0 to 20.0 was measured on the west-central side of the excavation.
QUESTIONS AND COMMENTS REGARDING THE RFI
The Contractors shall submit any comments or questions regarding the RFI to the Contract Specialist in writing no later than January 5, 2017. The Contractor may transmit questions and comments via fax or e-mail. The Contract Specialist will answer all questions in writing and post all questions and answers on the CHPRC website.

SUBMITTAL ADDRESS
 Douglas C. Ordal
 Contract Specialist
 CH2MILL Plateau Remediation Company
 PO Box 1600, M/S H8-42
 Richland, WA 99352
 Phone: (509) 376-2656
 Fax: (509) 376-7384
 Douglas_C_Ordal@rl.gov